Robert W. Nickells, PhD

Dr. Nickells is Professor and Vice Chair of Research in the Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison. He has appointments in the Department of Physiology, UW Comprehensive Cancer Center, Institute on Aging, and the Eye Research Institute. His research utilizes the tools of molecular biology to investigate pathophysiologic processes of the retina and optic nerve. His current research focuses on intracellular signaling pathways in glaucoma and neuroprotective mechanisms.

Recent Publications

2017

Related Articles

Negative regulators of angiogenesis: important targets for treatment of exudative AMD.

Clin Sci (Lond). 2017 Aug 01;131(15):1763-1780

Authors: Farnoodian M, Wang S, Dietz J, Nickells RW, Sorenson CM, Sheibani N

Related Articles

Negative regulators of angiogenesis: important targets for treatment of exudative AMD.

Clin Sci (Lond). 2017 Aug 01;131(15):1763-1780

Authors: Farnoodian M, Wang S, Dietz J, Nickells RW, Sorenson CM, Sheibani N

Abstract
Angiogenesis contributes to the pathogenesis of many diseases including exudative age-related macular degeneration (AMD). It is normally kept in check by a tightly balanced production of pro- and anti-angiogenic factors. The up-regulation of the pro-angiogenic factor, vascular endothelial growth factor (VEGF), is intimately linked to the pathogenesis of exudative AMD, and its antagonism has been effectively targeted for treatment. However, very little is known about potential changes in expression of anti-angiogenic factors and the role they play in choroidal vascular homeostasis and neovascularization associated with AMD. Here, we will discuss the important role of thrombospondins and pigment epithelium-derived factor, two major endogenous inhibitors of angiogenesis, in retinal and choroidal vascular homeostasis and their potential alterations during AMD and choroidal neovascularization (CNV). We will review the cell autonomous function of these proteins in retinal and choroidal vascular cells. We will also discuss the potential targeting of these molecules and use of their mimetic peptides for therapeutic development for exudative AMD.

PMID: 28679845 [PubMed - in process]

Related Articles

Negative regulators of angiogenesis: important targets for treatment of exudative AMD.

Clin Sci (Lond). 2017 Aug 01;131(15):1763-1780

Authors: Farnoodian M, Wang S, Dietz J, Nickells RW, Sorenson CM, Sheibani N

Related Articles

Meta-analysis of transcriptomic changes in optic nerve injury and neurodegenerative models reveals a fundamental response to injury throughout the central nervous system.

Mol Vis. 2017;23:987-1005

Authors: Donahue RJ, Moller-Trane R, Nickells RW

Related Articles

Meta-analysis of transcriptomic changes in optic nerve injury and neurodegenerative models reveals a fundamental response to injury throughout the central nervous system.

Mol Vis. 2017;23:987-1005

Authors: Donahue RJ, Moller-Trane R, Nickells RW

Abstract
Purpose: Injury to the central nervous system (CNS) leads to transcriptional changes that effect tissue function and govern the process of neurodegeneration. Numerous microarray and RNA-Seq studies have been performed to identify these transcriptional changes in the retina following optic nerve injury and elsewhere in the CNS following a variety of insults. We reasoned that conserved transcriptional changes between injury paradigms would be important contributors to the neurodegenerative process. Therefore, we compared the expression results from heterogeneous studies of optic nerve injury and neurodegenerative models.
Methods: Expression data was collected from the Gene Expression Omnibus. A uniform method for normalizing expression data and detecting differentially expressed (DE) genes was used to compare the transcriptomes from models of acute optic nerve injury (AONI), chronic optic nerve injury (CONI) and brain neurodegeneration. DE genes were split into genes that were more or less prevalent in the injured condition than the control condition (enriched and depleted, respectively) and transformed into their human orthologs so that transcriptomes from different species could be compared. Biologic significance of shared genes was assessed by analyzing lists of shared genes for gene ontology (GO) term over-representation and for representation in KEGG pathways.
Results: There was significant overlap of enriched DE genes between transcriptomes of AONI, CONI and neurodegeneration studies even though the overall concordance between datasets was low. The depleted DE genes identified between AONI and CONI models were significantly overlapping, but this significance did not extend to comparisons between optic nerve injury models and neurodegeneration studies. The GO terms overrepresented among the enriched genes shared between AONI, CONI and neurodegeneration studies were related to innate immune processes like the complement system and interferon signaling. KEGG pathway analysis revealed that transcriptional alteration between JAK-STAT, PI3K-AKT and TNF signaling, among others, were conserved between all models that were analyzed.
Conclusions: There is a conserved transcriptional response to injury in the CNS. This transcriptional response is driven by the activation of the innate immune system and several regulatory pathways. Understanding the cellular origin of these pathways and the pathological consequences of their activation is essential for understanding and treating neurodegenerative disease.

PMID: 29386873 [PubMed - in process]

Related Articles

Meta-analysis of transcriptomic changes in optic nerve injury and neurodegenerative models reveals a fundamental response to injury throughout the central nervous system.

Mol Vis. 2017;23:987-1005

Authors: Donahue RJ, Moller-Trane R, Nickells RW

2015

Related Articles

Role of HDACs in optic nerve damage-induced nuclear atrophy of retinal ganglion cells.

Neurosci Lett. 2015 Dec 28;

Authors: Schmitt HM, Schlamp CL, Nickells RW

Related Articles

Role of HDACs in optic nerve damage-induced nuclear atrophy of retinal ganglion cells.

Neurosci Lett. 2015 Dec 28;

Authors: Schmitt HM, Schlamp CL, Nickells RW

Abstract
Optic neuropathies are characterized by retinal ganglion cell (RGC) death, resulting in the loss of vision. In glaucoma, the most common optic neuropathy, RGC death is initiated by axonal damage, and can be modeled by inducing acute axonal trauma through procedures such as optic nerve crush (ONC) or optic nerve axotomy. One of the early events of RGC death is nuclear atrophy, and is comprised of RGC-specific gene silencing, histone deacetylation, heterochromatin formation, and nuclear shrinkage. These early events appear to be principally regulated by epigenetic mechanisms involving histone deacetylation. Class I histone deacetylases HDACs 1, 2, and 3 are known to play important roles in the process of early nuclear atrophy in RGCs, and studies using both inhibitors and genetic ablation of Hdacs also reveal a critical role in the cell death process. Select inhibitors, such as those being developed for cancer therapy, may also provide a viable secondary treatment option for optic neuropathies.

PMID: 26733303 [PubMed - as supplied by publisher]

Related Articles

Role of HDACs in optic nerve damage-induced nuclear atrophy of retinal ganglion cells.

Neurosci Lett. 2015 Dec 28;

Authors: Schmitt HM, Schlamp CL, Nickells RW

2014

Related Articles

Histone deacetylase 3 (HDAC3) plays an important role in retinal ganglion cell death after acute optic nerve injury.

Mol Neurodegener. 2014;9:39

Authors: Schmitt HM, Pelzel HR, Schlamp CL, Nickells RW

Related Articles

Histone deacetylase 3 (HDAC3) plays an important role in retinal ganglion cell death after acute optic nerve injury.

Mol Neurodegener. 2014;9:39

Authors: Schmitt HM, Pelzel HR, Schlamp CL, Nickells RW

Abstract
BACKGROUND: Optic nerve damage initiates a series of early atrophic events in retinal ganglion cells (RGCs) that precede the BAX-dependent committed step of the intrinsic apoptotic program. Nuclear atrophy, including global histone deacetylation, heterochromatin formation, shrinkage and collapse of nuclear structure, and the silencing of normal gene expression, comprise an important obstacle to overcome in therapeutic approaches to preserve neuronal function. Several studies have implicated histone deacetylases (HDACs) in the early stages of neuronal cell death, including RGCs. Importantly, these neurons exhibit nuclear translocation of HDAC3 shortly after optic nerve damage. Additionally, HDAC3 activity has been reported to be selectively toxic to neurons.
RESULTS: RGC-specific conditional knockout of Hdac3 was achieved by transducing the RGCs of Hdac3fl/fl mice with an adeno-associated virus serotype 2 carrying CRE recombinase and GFP (AAV2-Cre/GFP). Controls included similar viral transduction of Rosa26fl/fl reporter mice. Optic nerve crush (ONC) was then performed on eyes. The ablation of Hdac3 in RGCs resulted in significant amelioration of characteristics of ONC-induced nuclear atrophy such as H4 deacetylation, heterochromatin formation, and the loss of nuclear structure. RGC death was also significantly reduced. Interestingly, loss of Hdac3 expression did not lead to protection against RGC-specific gene silencing after ONC, although this effect was achieved using the broad spectrum inhibitor, Trichostatin A.
CONCLUSION: Although other HDACs may be responsible for gene expression changes in RGCs, our results indicate a critical role for HDAC3 in nuclear atrophy in RGC apoptosis following axonal injury. This study provides a framework for studying the roles of other prevalent retinal HDACs in neuronal death as a result of axonal injury.

PMID: 25261965 [PubMed - indexed for MEDLINE]

Related Articles

Histone deacetylase 3 (HDAC3) plays an important role in retinal ganglion cell death after acute optic nerve injury.

Mol Neurodegener. 2014;9:39

Authors: Schmitt HM, Pelzel HR, Schlamp CL, Nickells RW

Related Articles

Tumor necrosis factor alpha has an early protective effect on retinal ganglion cells after optic nerve crush.

J Neuroinflammation. 2014;11(1):194

Authors: Mac Nair CE, Fernandes KA, Schlamp CL, Libby RT, Nickells RW

Related Articles

Tumor necrosis factor alpha has an early protective effect on retinal ganglion cells after optic nerve crush.

J Neuroinflammation. 2014;11(1):194

Authors: Mac Nair CE, Fernandes KA, Schlamp CL, Libby RT, Nickells RW

Abstract
BACKGROUND: Glaucoma is an optic neuropathy that is characterized by the loss of retinal ganglion cells (RGCs) initiated by damage to axons in the optic nerve. The degeneration and death of RGCs has been thought to occur in two waves. The first is axogenic, caused by direct insult to the axon. The second is somatic, and is thought to be caused by the production of inflammatory cytokines from the activated retinal innate immune cells. One of the cytokines consistently linked to glaucoma and RGC damage has been TNFα. Despite strong evidence implicating this protein in neurodegeneration, a direct injection of TNFα does not mimic the rapid loss of RGCs observed after acute optic nerve trauma or exposure to excitotoxins. This suggests that our understanding of TNFα signaling is incomplete.
METHODS: RGC death was induced by optic nerve crush in mice. The role of TNFα in this process was examined by quantitative PCR of Tnfα gene expression, and quantification of cell loss in Tnfα (-/-) mice or in wild-type animals receiving an intraocular injection of exongenous TNFα either before or after crush. Signaling pathways downstream of TNFα were examined by immunolabeling for JUN protein accumulation or activation of EGFP expression in NFκB reporter mice.
RESULTS: Optic nerve crush caused a modest increase in Tnfα gene expression, with kinetics similar to the activation of both macroglia and microglia. A pre-injection of TNFα attenuated ganglion cell loss after crush, while ganglion cell loss was more severe in Tnfα (-/-) mice. Conversely, over the long term, a single exposure to TNFα induced extrinsic apoptosis in RGCs. Müller cells responded to exogenous TNFα by accumulating JUN and activating NFκB.
CONCLUSION: Early after optic nerve crush, TNFα appears to have a protective role for RGCs, which may be mediated through Müller cells.

PMID: 25407441 [PubMed - in process]

Related Articles

Tumor necrosis factor alpha has an early protective effect on retinal ganglion cells after optic nerve crush.

J Neuroinflammation. 2014;11(1):194

Authors: Mac Nair CE, Fernandes KA, Schlamp CL, Libby RT, Nickells RW

Related Articles

Spink2 modulates apoptotic susceptibility and is a candidate gene in the Rgcs1 QTL that affects retinal ganglion cell death after optic nerve damage.

PLoS One. 2014;9(4):e93564

Authors: Dietz JA, Maes ME, Huang S, Yandell BS, Schlamp CL, Montgomery AD, Allingham RR, Hauser MA, Nickells RW

Related Articles

Spink2 modulates apoptotic susceptibility and is a candidate gene in the Rgcs1 QTL that affects retinal ganglion cell death after optic nerve damage.

PLoS One. 2014;9(4):e93564

Authors: Dietz JA, Maes ME, Huang S, Yandell BS, Schlamp CL, Montgomery AD, Allingham RR, Hauser MA, Nickells RW

Abstract
The Rgcs1 quantitative trait locus, on mouse chromosome 5, influences susceptibility of retinal ganglion cells to acute damage of the optic nerve. Normally resistant mice (DBA/2J) congenic for the susceptible allele from BALB/cByJ mice exhibit susceptibility to ganglion cells, not only in acute optic nerve crush, but also to chronic inherited glaucoma that is characteristic of the DBA/2J strain as they age. SNP mapping of this QTL has narrowed the region of interest to 1 Mb. In this region, a single gene (Spink2) is the most likely candidate for this effect. Spink2 is expressed in retinal ganglion cells and is increased after optic nerve damage. This gene is also polymorphic between resistant and susceptible strains, containing a single conserved amino acid change (threonine to serine) and a 220 bp deletion in intron 1 that may quantitatively alter endogenous expression levels between strains. Overexpression of the different variants of Spink2 in D407 tissue culture cells also increases their susceptibility to the apoptosis-inducing agent staurosporine in a manner consistent with the differential susceptibility between the DBA/2J and BALB/cByJ strains.

PMID: 24699552 [PubMed - indexed for MEDLINE]

Related Articles

Spink2 modulates apoptotic susceptibility and is a candidate gene in the Rgcs1 QTL that affects retinal ganglion cell death after optic nerve damage.

PLoS One. 2014;9(4):e93564

Authors: Dietz JA, Maes ME, Huang S, Yandell BS, Schlamp CL, Montgomery AD, Allingham RR, Hauser MA, Nickells RW

2013

Related Articles

Functional genomic screening identifies dual leucine zipper kinase as a key mediator of retinal ganglion cell death.

Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):4045-50

Authors: Welsbie DS, Yang Z, Ge Y, Mitchell KL, Zhou X, Martin SE, Berlinicke CA, Hackler L, Fuller J, Fu J, Cao LH, Han B, Auld D, Xue T, Hirai S, Germain L, Simard-Bisson C, Blouin R, Nguyen JV, Davis CH, Enke RA, Boye SL, Merbs SL, Marsh-Armstrong N, Hauswirth WW, DiAntonio A, Nickells RW, Inglese J, Hanes J, Yau KW, Quigley HA, Zack DJ

Related Articles

Functional genomic screening identifies dual leucine zipper kinase as a key mediator of retinal ganglion cell death.

Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):4045-50

Authors: Welsbie DS, Yang Z, Ge Y, Mitchell KL, Zhou X, Martin SE, Berlinicke CA, Hackler L, Fuller J, Fu J, Cao LH, Han B, Auld D, Xue T, Hirai S, Germain L, Simard-Bisson C, Blouin R, Nguyen JV, Davis CH, Enke RA, Boye SL, Merbs SL, Marsh-Armstrong N, Hauswirth WW, DiAntonio A, Nickells RW, Inglese J, Hanes J, Yau KW, Quigley HA, Zack DJ

Abstract
Glaucoma, a major cause of blindness worldwide, is a neurodegenerative optic neuropathy in which vision loss is caused by loss of retinal ganglion cells (RGCs). To better define the pathways mediating RGC death and identify targets for the development of neuroprotective drugs, we developed a high-throughput RNA interference screen with primary RGCs and used it to screen the full mouse kinome. The screen identified dual leucine zipper kinase (DLK) as a key neuroprotective target in RGCs. In cultured RGCs, DLK signaling is both necessary and sufficient for cell death. DLK undergoes robust posttranscriptional up-regulation in response to axonal injury in vitro and in vivo. Using a conditional knockout approach, we confirmed that DLK is required for RGC JNK activation and cell death in a rodent model of optic neuropathy. In addition, tozasertib, a small molecule protein kinase inhibitor with activity against DLK, protects RGCs from cell death in rodent glaucoma and traumatic optic neuropathy models. Together, our results establish a previously undescribed drug/drug target combination in glaucoma, identify an early marker of RGC injury, and provide a starting point for the development of more specific neuroprotective DLK inhibitors for the treatment of glaucoma, nonglaucomatous forms of optic neuropathy, and perhaps other CNS neurodegenerations.

PMID: 23431148 [PubMed - indexed for MEDLINE]

Related Articles

Functional genomic screening identifies dual leucine zipper kinase as a key mediator of retinal ganglion cell death.

Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):4045-50

Authors: Welsbie DS, Yang Z, Ge Y, Mitchell KL, Zhou X, Martin SE, Berlinicke CA, Hackler L, Fuller J, Fu J, Cao LH, Han B, Auld D, Xue T, Hirai S, Germain L, Simard-Bisson C, Blouin R, Nguyen JV, Davis CH, Enke RA, Boye SL, Merbs SL, Marsh-Armstrong N, Hauswirth WW, DiAntonio A, Nickells RW, Inglese J, Hanes J, Yau KW, Quigley HA, Zack DJ

Related Articles

Nuclear atrophy of retinal ganglion cells precedes the bax-dependent stage of apoptosis.

Invest Ophthalmol Vis Sci. 2013 Mar;54(3):1805-15

Authors: Janssen KT, Mac Nair CE, Dietz JA, Schlamp CL, Nickells RW

Related Articles

Nuclear atrophy of retinal ganglion cells precedes the bax-dependent stage of apoptosis.

Invest Ophthalmol Vis Sci. 2013 Mar;54(3):1805-15

Authors: Janssen KT, Mac Nair CE, Dietz JA, Schlamp CL, Nickells RW

Abstract
PURPOSE: Retinal ganglion cells atrophy during the execution of the intrinsic apoptotic program. This process, which has been termed the apoptotic volume decrease (AVD) in other cell types, has not been well-characterized in ganglion cells.
METHODS: Acute optic nerve crush was used to examine neuronal atrophy in the ganglion cell layer in wild-type and Bax-deficient mice. Nuclear size was measured from retinal wholemounts. Heterochromatin formation was assessed using transmission electron microscopy, whereas histone H4 acetylation was monitored using immunofluoresence. Ganglion cell and retinal transcript abundance was measured using quantitative PCR.
RESULTS: Nuclear and soma sizes linearly correlated in both control and damaged retinas. Cells in wild-type mice exhibited nuclear atrophy within 1 day after optic nerve damage. Three days after crush, nuclear atrophy was restricted to ganglion cells identified by retrograde labeling, while amacrine cells also exhibited some atrophy by 5 days. Similar kinetics of nuclear atrophy were observed in cells deficient for the essential proapoptotic gene Bax. Bax-deficient cells also exhibited other nuclear changes common in wild-type cells, including the deacetylation of histones, formation of heterochromatin, and the silencing of ganglion cell-specific gene expression.
CONCLUSIONS: Retinal ganglion cell somas and nuclei undergo the AVD in response to optic nerve damage. Atrophy is rapid and precedes the Bax-dependent committed step of the intrinsic apoptotic pathway.

PMID: 23422829 [PubMed - indexed for MEDLINE]

Related Articles

Nuclear atrophy of retinal ganglion cells precedes the bax-dependent stage of apoptosis.

Invest Ophthalmol Vis Sci. 2013 Mar;54(3):1805-15

Authors: Janssen KT, Mac Nair CE, Dietz JA, Schlamp CL, Nickells RW

Related Articles

Evaluation of the percentage of ganglion cells in the ganglion cell layer of the rodent retina.

Mol Vis. 2013;19:1387-96

Authors: Schlamp CL, Montgomery AD, Mac Nair CE, Schuart C, Willmer DJ, Nickells RW

Related Articles

Evaluation of the percentage of ganglion cells in the ganglion cell layer of the rodent retina.

Mol Vis. 2013;19:1387-96

Authors: Schlamp CL, Montgomery AD, Mac Nair CE, Schuart C, Willmer DJ, Nickells RW

Abstract
PURPOSE: Retinal ganglion cells comprise a percentage of the neurons actually residing in the ganglion cell layer (GCL) of the rodent retina. This estimate is useful to extrapolate ganglion cell loss in models of optic nerve disease, but the values reported in the literature are highly variable depending on the methods used to obtain them.
METHODS: We tested three retrograde labeling methods and two immunostaining methods to calculate ganglion cell number in the mouse retina (C57BL/6). Additionally, a double-stain retrograde staining method was used to label rats (Long-Evans). The number of total neurons was estimated using a nuclear stain and selecting for nuclei that met specific criteria. Cholinergic amacrine cells were identified using transgenic mice expressing Tomato fluorescent protein. Total neurons and total ganglion cell numbers were measured in microscopic fields of 10(4) µm(2) to determine the percentage of neurons comprising ganglion cells in each field.
RESULTS: Historical estimates of the percentage of ganglion cells in the mouse GCL range from 36.1% to 67.5% depending on the method used. Experimentally, retrograde labeling methods yielded a combined estimate of 50.3% in mice. A retrograde method also yielded a value of 50.21% for rat retinas. Immunolabeling estimates were higher at 64.8%. Immunolabeling may introduce overestimates, however, with non-specific labeling effects, or ectopic expression of antigens in neurons other than ganglion cells.
CONCLUSIONS: Since immunolabeling methods may overestimate ganglion cell numbers, we conclude that 50%, which is consistently derived from retrograde labeling methods, is a reliable estimate of the ganglion cells in the neuronal population of the GCL.

PMID: 23825918 [PubMed - indexed for MEDLINE]

Related Articles

Evaluation of the percentage of ganglion cells in the ganglion cell layer of the rodent retina.

Mol Vis. 2013;19:1387-96

Authors: Schlamp CL, Montgomery AD, Mac Nair CE, Schuart C, Willmer DJ, Nickells RW

2012

Related Articles

The cell and molecular biology of glaucoma: mechanisms of retinal ganglion cell death.

Invest Ophthalmol Vis Sci. 2012 May;53(5):2476-81

Authors: Nickells RW

Related Articles

The cell and molecular biology of glaucoma: mechanisms of retinal ganglion cell death.

Invest Ophthalmol Vis Sci. 2012 May;53(5):2476-81

Authors: Nickells RW

PMID: 22562845 [PubMed - indexed for MEDLINE]

Related Articles

The cell and molecular biology of glaucoma: mechanisms of retinal ganglion cell death.

Invest Ophthalmol Vis Sci. 2012 May;53(5):2476-81

Authors: Nickells RW

Related Articles

The potential role of epigenetics in ocular diseases.

Arch Ophthalmol. 2012 Apr;130(4):508-9

Authors: Nickells RW, Merbs SL

Related Articles

The potential role of epigenetics in ocular diseases.

Arch Ophthalmol. 2012 Apr;130(4):508-9

Authors: Nickells RW, Merbs SL

PMID: 22491920 [PubMed - indexed for MEDLINE]

Related Articles

The potential role of epigenetics in ocular diseases.

Arch Ophthalmol. 2012 Apr;130(4):508-9

Authors: Nickells RW, Merbs SL

Related Articles

Hydrocortisone stimulates neurite outgrowth from mouse retinal explants by modulating macroglial activity.

Invest Ophthalmol Vis Sci. 2012 Apr;53(4):2046-61

Authors: Toops KA, Berlinicke C, Zack DJ, Nickells RW

Related Articles

Hydrocortisone stimulates neurite outgrowth from mouse retinal explants by modulating macroglial activity.

Invest Ophthalmol Vis Sci. 2012 Apr;53(4):2046-61

Authors: Toops KA, Berlinicke C, Zack DJ, Nickells RW

Abstract
PURPOSE: There is mounting evidence that retinal ganglion cells (RGCs) require a complex milieu of trophic factors to enhance cell survival and axon regeneration after optic nerve injury. The authors' goal was to examine the contribution of components of a combination of hormones, growth factors, steroids, and small molecules to creating a regenerative environment and to determine if any of these components modulated macroglial behavior to aid in regeneration.
METHODS: Postnatal day 7 mouse retinal explants embedded in collagen were used as an in vitro model of neurite regeneration. Explants were treated with the culture supplements fetal bovine serum, N2, and G5 and a mixture of G5 and N2 components, designated enhanced N2 (EN2). Explants were evaluated for neurite outgrowth over 7 days in culture. The effects of each treatment were also evaluated on cultured RGCs purified by Thy1 immunopanning. Immunohistochemistry and qPCR analysis were used to evaluate differences in gene expression in the explants due to different treatments.
RESULTS: EN2 stimulated significant neurite outgrowth from explants but not from purified RGCs. Elimination of hydrocortisone (HC) from EN2 reduced the mean neurites per explant by 37%. EN2-treated explants demonstrated increased expression of Gfap, Glul, Glt1, Cntf, Pedf, and VegfA compared with explants treated with EN2 without HC. Subsequent experiments showed that increased expression of Cntf and Glul was critical to the trophic effect of HC.
CONCLUSIONS: These data suggest that the HC in EN2 indirectly contributed to neurite outgrowth by activating macroglia to produce neurotrophic and neuroprotective molecules.

PMID: 22395888 [PubMed - indexed for MEDLINE]

Related Articles

Hydrocortisone stimulates neurite outgrowth from mouse retinal explants by modulating macroglial activity.

Invest Ophthalmol Vis Sci. 2012 Apr;53(4):2046-61

Authors: Toops KA, Berlinicke C, Zack DJ, Nickells RW

Related Articles

Silencing of Fem1cR3 gene expression in the DBA/2J mouse precedes retinal ganglion cell death and is associated with histone deacetylase activity.

Invest Ophthalmol Vis Sci. 2012 Mar;53(3):1428-35

Authors: Pelzel HR, Schlamp CL, Waclawski M, Shaw MK, Nickells RW

Related Articles

Silencing of Fem1cR3 gene expression in the DBA/2J mouse precedes retinal ganglion cell death and is associated with histone deacetylase activity.

Invest Ophthalmol Vis Sci. 2012 Mar;53(3):1428-35

Authors: Pelzel HR, Schlamp CL, Waclawski M, Shaw MK, Nickells RW

Abstract
PURPOSE: Downregulation of normal gene expression in dying retinal ganglion cells has been documented in both acute and chronic models of optic nerve disease. The authors examined the mechanism and timing of this phenomenon in DBA/2J mice, using genetically modified substrains of this inbred line.
METHODS: DBA/2J mice, doubly congenic for the Bax mutant allele and the ganglion cell reporter gene Fem1c(Rosa3) (R3), were evaluated to elucidate the timing of loss of normal gene expression during the apoptotic process. The localization of histone deacetylase 3 (HDAC3) and nuclear histone H4 acetylation were examined by immunofluorescence in dying cells. The role of HDACs in gene silencing during glaucoma was interrogated using the global HDAC inhibitor trichostatin A (TSA).
RESULTS: Silencing of the R3 allele occurred in Bax(-/-) ganglion cells, indicating that this process preceded the committed step of the intrinsic apoptotic pathway. Weekly TSA treatment, between the ages of 6 and 10 months, was able to attenuate the loss of R3 expression in the retina, but had no effect on optic nerve degeneration. Dying cells in aging DBA/2J mice exhibited nuclear localization of HDAC3 and a decrease in the level of H4 acetylation.
CONCLUSIONS: Retinal ganglion cells exhibit a loss of normal gene expression as an early (pre-BAX involvement) part of their apoptotic program during glaucomatous degeneration. This process can be ameliorated, but not completely blocked, using HDAC inhibitors. Epigenetic changes to active chromatin, such as deacetylation, may be mediated by HDAC3 in dying neurons.

PMID: 22297488 [PubMed - indexed for MEDLINE]

Related Articles

Silencing of Fem1cR3 gene expression in the DBA/2J mouse precedes retinal ganglion cell death and is associated with histone deacetylase activity.

Invest Ophthalmol Vis Sci. 2012 Mar;53(3):1428-35

Authors: Pelzel HR, Schlamp CL, Waclawski M, Shaw MK, Nickells RW

Related Articles

The effect of glial fibrillary acidic protein expression on neurite outgrowth from retinal explants in a permissive environment.

BMC Res Notes. 2012;5:693

Authors: Toops KA, Hagemann TL, Messing A, Nickells RW

Related Articles

The effect of glial fibrillary acidic protein expression on neurite outgrowth from retinal explants in a permissive environment.

BMC Res Notes. 2012;5:693

Authors: Toops KA, Hagemann TL, Messing A, Nickells RW

Abstract
BACKGROUND: Increased expression of glial fibrillary acidic protein (GFAP) within macroglia is commonly seen as a hallmark of glial activation after damage within the central nervous system, including the retina. The increased expression of GFAP in glia is also considered part of the pathologically inhibitory environment for regeneration of axons from damaged neurons. Recent studies have raised the possibility that reactive gliosis and increased GFAP cannot automatically be assumed to be negative events for the surrounding neurons and that the context of the reactive gliosis is critical to whether neurons benefit or suffer. We utilized transgenic mice expressing a range of Gfap to titrate the amount of GFAP in retinal explants to investigate the relationship between GFAP concentration and the regenerative potential of retinal ganglion cells.
FINDINGS: Explants from Gfap-/- and Gfap+/- mice did not have increased neurite outgrowth compared with Gfap+/+ or Gfap over-expressing mice as would be expected if GFAP was detrimental to axon regeneration. In fact, Gfap over-expressing explants had the most neurite outgrowth when treated with a neurite stimulatory media. Transmission electron microscopy revealed that neurites formed bundles, which were surrounded by larger cellular processes that were GFAP positive indicating a close association between growing axons and glial cells in this regeneration paradigm.
CONCLUSIONS: We postulate that glial cells with increased Gfap expression support the elongation of new neurites from retinal ganglion cells possibly by providing a scaffold for outgrowth.

PMID: 23259929 [PubMed - indexed for MEDLINE]

Related Articles

The effect of glial fibrillary acidic protein expression on neurite outgrowth from retinal explants in a permissive environment.

BMC Res Notes. 2012;5:693

Authors: Toops KA, Hagemann TL, Messing A, Nickells RW

Related Articles

Under pressure: cellular and molecular responses during glaucoma, a common neurodegeneration with axonopathy.

Annu Rev Neurosci. 2012;35:153-79

Authors: Nickells RW, Howell GR, Soto I, John SW

Related Articles

Under pressure: cellular and molecular responses during glaucoma, a common neurodegeneration with axonopathy.

Annu Rev Neurosci. 2012;35:153-79

Authors: Nickells RW, Howell GR, Soto I, John SW

Abstract
Glaucoma is a complex neurodegenerative disorder that is expected to affect 80 million people by the end of this decade. Retinal ganglion cells (RGCs) are the most affected cell type and progressively degenerate over the course of the disease. RGC axons exit the eye and enter the optic nerve by passing through the optic nerve head (ONH). The ONH is an important site of initial damage in glaucoma. Higher intraocular pressure (IOP) is an important risk factor for glaucoma, but the molecular links between elevated IOP and axon damage in the ONH are poorly defined. In this review and focusing primarily on the ONH, we discuss recent studies that have contributed to understanding the etiology and pathogenesis of glaucoma. We also identify areas that require further investigation and focus on mechanisms identified in other neurodegenerations that may contribute to RGC dysfunction and demise in glaucoma.

PMID: 22524788 [PubMed - indexed for MEDLINE]

Related Articles

Under pressure: cellular and molecular responses during glaucoma, a common neurodegeneration with axonopathy.

Annu Rev Neurosci. 2012;35:153-79

Authors: Nickells RW, Howell GR, Soto I, John SW

2011

Related Articles

A role for epigenetic changes in the development of retinal neurodegenerative conditions.

J Ocul Biol Dis Infor. 2011 Sep;4(3):104-10

Authors: Pelzel HR, Nickells RW

Related Articles

A role for epigenetic changes in the development of retinal neurodegenerative conditions.

J Ocul Biol Dis Infor. 2011 Sep;4(3):104-10

Authors: Pelzel HR, Nickells RW

PMID: 23515137 [PubMed]

Related Articles

A role for epigenetic changes in the development of retinal neurodegenerative conditions.

J Ocul Biol Dis Infor. 2011 Sep;4(3):104-10

Authors: Pelzel HR, Nickells RW

Related Articles

WITHDRAWN: Reprint of: Variations in the rheostat model of apoptosis: What studies of retinal ganglion cell death tell us about the functions of the Bcl2 family proteins.

Exp Eye Res. 2011 Jul 29;

Authors: Nickells RW

Related Articles

WITHDRAWN: Reprint of: Variations in the rheostat model of apoptosis: What studies of retinal ganglion cell death tell us about the functions of the Bcl2 family proteins.

Exp Eye Res. 2011 Jul 29;

Authors: Nickells RW

Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, doi:10.1016/j.exer.2010.03.004. The duplicate article has therefore been withdrawn.

PMID: 21819979 [PubMed - as supplied by publisher]

Related Articles

WITHDRAWN: Reprint of: Variations in the rheostat model of apoptosis: What studies of retinal ganglion cell death tell us about the functions of the Bcl2 family proteins.

Exp Eye Res. 2011 Jul 29;

Authors: Nickells RW

Related Articles

Accelerated retinal ganglion cell death in mice deficient in the Sigma-1 receptor.

Mol Vis. 2011;17:1034-43

Authors: Mavlyutov TA, Nickells RW, Guo LW

Related Articles

Accelerated retinal ganglion cell death in mice deficient in the Sigma-1 receptor.

Mol Vis. 2011;17:1034-43

Authors: Mavlyutov TA, Nickells RW, Guo LW

Abstract
PURPOSE: The sigma-1 receptor (σR1), a ligand-operated chaperone, has been inferred to be neuroprotective in previous studies using σR1 ligands. The σR1 specificity of the protective function, however, has yet to be firmly established, due to the existence of non-σR1 targets of the ligands. Here, we used the σR1-knockout mouse (Sigmar1(-/-)) to demonstrate unambiguously the role of the σR1 in protecting the retinal ganglion cells against degeneration after acute damage to the optic nerve.
METHODS: Retinal σR binding sites were labeled with radioiodinated σR ligands and analyzed by autoradiography. Localization of the σR1 was performed by indirect immunofluorescence on frozen retinal sections. Retinal ganglion cell death was induced by acute optic nerve crush in wild-type and Sigmar1(-/-) mice. Surviving cells in the ganglion cell layer were counted on Nissl-stained retinal whole mounts 7 days after the crush surgery.
RESULTS: Photoaffinity labeling indicated the presence of the σR1 in the retina, in concentrations equivalent to those in liver tissue. Immunolabeling detected this receptor in cells of both the ganglion cell layer and the photoreceptor cell layer in wild-type retinas. Quantification of cells remaining after optic nerve crush showed that 86.8±7.9% cells remained in the wild-type ganglion cell layer, but only 68.3±3.4% survived in the Sigmar1(-/-), demonstrating a significant difference between the wild-type and the Sigmar1(-/-) in crush-induced ganglion cell loss.
CONCLUSIONS: Our data indicated faster retinal ganglion cell death in Sigmar1(-/-) than in wild-type mice under the stresses caused by optic nerve crush, providing direct evidence for a role of the σR1 in alleviating retinal degeneration. This conclusion is consistent with the previous pharmacological studies using σR1 agonists. Thus, our study supports the idea that the σR1 is a promising therapeutic target for neurodegenerative retinal diseases, such as glaucoma.

PMID: 21541278 [PubMed - indexed for MEDLINE]

Related Articles

Accelerated retinal ganglion cell death in mice deficient in the Sigma-1 receptor.

Mol Vis. 2011;17:1034-43

Authors: Mavlyutov TA, Nickells RW, Guo LW

2010

Related Articles

Variations in the rheostat model of apoptosis: what studies of retinal ganglion cell death tell us about the functions of the Bcl2 family proteins.

Exp Eye Res. 2010 Jul;91(1):2-8

Authors: Nickells RW

Related Articles

Variations in the rheostat model of apoptosis: what studies of retinal ganglion cell death tell us about the functions of the Bcl2 family proteins.

Exp Eye Res. 2010 Jul;91(1):2-8

Authors: Nickells RW

Abstract
Studies of the functions of members of the Bcl2 gene family suggested that apoptosis was controlled by a rheostat in which anti-apoptotic proteins like BCL2 bound and sequestered pro-apoptotic proteins like BAX. Our current understanding of these proteins suggests that this is a simplistic model. The new rheostat model predicts that BH3-only peptides act as neutralizing ligands for the anti-apoptotic proteins, thus allowing molecules like BAX to become activated and initiate mitochondrial dysfunction - a critical step in the intrinsic apoptotic program. Studies of retinal ganglion cell apoptosis indicate that a threshold of BAX expression is required for its successful activation, which is independent of the overall concentration of anti-apoptotic proteins in these cells.

PMID: 20230818 [PubMed - indexed for MEDLINE]

Related Articles

Variations in the rheostat model of apoptosis: what studies of retinal ganglion cell death tell us about the functions of the Bcl2 family proteins.

Exp Eye Res. 2010 Jul;91(1):2-8

Authors: Nickells RW

Related Articles

The apoptotic response in HCT116BAX-/- cancer cells becomes rapidly saturated with increasing expression of a GFP-BAX fusion protein.

BMC Cancer. 2010;10:554

Authors: Semaan SJ, Nickells RW

Related Articles

The apoptotic response in HCT116BAX-/- cancer cells becomes rapidly saturated with increasing expression of a GFP-BAX fusion protein.

BMC Cancer. 2010;10:554

Authors: Semaan SJ, Nickells RW

Abstract
BACKGROUND: Many chemotherapeutic agents promote tumor cell death by activating the intrinsic pathway of apoptosis. Intrinsic apoptosis involves permeabilization of the mitochondrial outer membrane and the release of cytochrome c, a process that is controlled by proteins of the BCL2 gene family. Chemoresistance is often associated with abnormalities in concentrations of BCL2 family proteins. Although stoichiometirc interactions between anti-apoptotic and BH3-only BCL2 family proteins have been well documented as affecting cell death, the association between changes in BAX concentration and intrinsic apoptosis are poorly understood.
METHODS: Exogenous GFP-murine Bax fusion constructs were transfected into BAX-deficient HCT116 cells. To titrate the expression of the fusion protein, GFP-BAX was cloned into a tetracycline sensitive expression cassette and cotransfected with a plasmid expressing the rtTA transcription factor into HCT116BAX-/- cells. Linear expression of the fusion gene was induced with doxycycline and monitored by quantitative PCR and immunoblotting. Cell death was assayed by DAPI staining cells after exposure to indomethacin, and scoring nuclei for condensed chromatin and fragmented nuclei.
RESULTS: HCT116BAX-/- cells were resistant to indomethacin, but susceptibility could be recovered in cells expressing a GFP-BAX fusion protein. Titration of GFP-BAX expression revealed that the concentration of BAX required to induce a saturating apoptosis response from baseline, was rapidly achieved. Increased levels of GFP-BAX were unable to stimulate higher levels of cell death. Examination of GFP-BAX distribution before and after indomethacin treatment indicated that BAX protein did not form aggregates when present at sub-lethal concentrations.
CONCLUSION: Within the limitations of this experimental system, BAX-dependent apoptosis in HCT116 cells exhibits an all-or-none response depending on the level of BAX protein present. The lack of BAX aggregation at sub-saturation levels suggests that the translocation step of BAX activation may be impaired.

PMID: 20942963 [PubMed - indexed for MEDLINE]

Related Articles

The apoptotic response in HCT116BAX-/- cancer cells becomes rapidly saturated with increasing expression of a GFP-BAX fusion protein.

BMC Cancer. 2010;10:554

Authors: Semaan SJ, Nickells RW

Related Articles

Histone H4 deacetylation plays a critical role in early gene silencing during neuronal apoptosis.

BMC Neurosci. 2010;11:62

Authors: Pelzel HR, Schlamp CL, Nickells RW

Related Articles

Histone H4 deacetylation plays a critical role in early gene silencing during neuronal apoptosis.

BMC Neurosci. 2010;11:62

Authors: Pelzel HR, Schlamp CL, Nickells RW

Abstract
BACKGROUND: Silencing of normal gene expression occurs early in the apoptosis of neurons, well before the cell is committed to the death pathway, and has been extensively characterized in injured retinal ganglion cells. The causative mechanism of this widespread change in gene expression is unknown. We investigated whether an epigenetic change in active chromatin, specifically histone H4 deacetylation, was an underlying mechanism of gene silencing in apoptotic retinal ganglion cells (RGCs) following an acute injury to the optic nerve.
RESULTS: Histone deacetylase 3 (HDAC3) translocates to the nuclei of dying cells shortly after lesion of the optic nerve and is associated with an increase in nuclear HDAC activity and widespread histone deacetylation. H4 in promoters of representative genes was rapidly and indiscriminately deacetylated, regardless of the gene examined. As apoptosis progressed, H4 of silenced genes remained deacetylated, while H4 of newly activated genes regained, or even increased, its acetylated state. Inhibition of retinal HDAC activity with trichostatin A (TSA) was able to both preserve the expression of a representative RGC-specific gene and attenuate cell loss in response to optic nerve damage.
CONCLUSIONS: These data indicate that histone deacetylation plays a central role in transcriptional dysregulation in dying RGCs. The data also suggests that HDAC3, in particular, may feature heavily in apoptotic gene silencing.

PMID: 20504333 [PubMed - indexed for MEDLINE]

Related Articles

Histone H4 deacetylation plays a critical role in early gene silencing during neuronal apoptosis.

BMC Neurosci. 2010;11:62

Authors: Pelzel HR, Schlamp CL, Nickells RW

Related Articles

A single nucleotide polymorphism in the Bax gene promoter affects transcription and influences retinal ganglion cell death.

ASN Neuro. 2010;2(2):e00032

Authors: Semaan SJ, Li Y, Nickells RW

Related Articles

A single nucleotide polymorphism in the Bax gene promoter affects transcription and influences retinal ganglion cell death.

ASN Neuro. 2010;2(2):e00032

Authors: Semaan SJ, Li Y, Nickells RW

Abstract
Pro-apoptotic Bax is essential for RGC (retinal ganglion cell) death. Gene dosage experiments in mice, yielding a single wild-type Bax allele, indicated that genetic background was able to influence the cell death phenotype. DBA/2J(Bax+/-) mice exhibited complete resistance to nerve damage after 2 weeks (similar to Bax(-/-) mice), but 129B6(Bax+/-) mice exhibited significant cell loss (similar to wild-type mice). The different cell death phenotype was associated with the level of Bax expression, where 129B6 neurons had twice the level of endogenous Bax mRNA and protein as DBA/2J neurons. Sequence analysis of the Bax promoters between these strains revealed a single nucleotide polymorphism (T(129B6) to C(DBA/2J)) at position -515. A 1.5- to 2.5-fold increase in transcriptional activity was observed from the 129B6 promoter in transient transfection assays in a variety of cell types, including RGC5 cells derived from rat RGCs. Since this polymorphism occurred in a p53 half-site, we investigated the requirement of p53 for the differential transcriptional activity. Differential transcriptional activity from either 129B6 or DBA/2J Bax promoters were unaffected in p53(-/-) cells, and addition of exogenous p53 had no further effect on this difference, thus a role for p53 was excluded. Competitive electrophoretic mobility-shift assays identified two DNA-protein complexes that interacted with the polymorphic region. Those forming Complex 1 bound with higher affinity to the 129B6 polymorphic site, suggesting that these proteins probably comprised a transcriptional activator complex. These studies implicated quantitative expression of the Bax gene as playing a possible role in neuronal susceptibility to damaging stimuli.

PMID: 20360947 [PubMed - indexed for MEDLINE]

Related Articles

A single nucleotide polymorphism in the Bax gene promoter affects transcription and influences retinal ganglion cell death.

ASN Neuro. 2010;2(2):e00032

Authors: Semaan SJ, Li Y, Nickells RW