Dr. Eells is Associate Professor of Pharmacology and Toxicology at the University of Wisconsin-Milwaukee. She is widely recognized as an expert in neurotoxicology and the mechanisms of retinal and optic nerve toxicity, and has served as an advisor and consultant to pharmaceutical companies, government agencies, and the World Health Organization. She has in-depth knowledge of physiology, pharmacology, neurobiology and toxicology with particular expertise in ocular toxicology. Her research focuses on the role of mitochondrial dysfunction and reactive oxygen species in retinal and optic nerve disease processes. Her laboratory has been involved in the development and evaluation of new technologies for the analysis and investigation of ion channel physiology, mitochondrial bioenergetics, retinal cell metabolism and photoreceptor function.
Janis Eells
Recent Publications
2024
Photobiomodulation use in ophthalmology - an overview of translational research from bench to bedside
Front Ophthalmol (Lausanne). 2024 Aug 15;4:1388602. doi: 10.3389/fopht.2024.1388602. eCollection 2024.
ABSTRACT
Photobiomodulation (PBM) refers to the process in which wavelengths of light are absorbed by intracellular photoacceptors, resulting in the activation of signaling pathways that culminate in biological changes within the cell. PBM is the result of low-intensity light-induced reactions in the cell in contrast to thermal photoablation produced by high-intensity lasers. PBM has been effectively used in the clinic to enhance wound healing and mitigate pain and inflammation in musculoskeletal conditions, sports injury, and dental applications for many decades. In the past 20 years, experimental evidence has shown the benefit of PBM in increasing numbers of retinal and ophthalmic conditions. More recently, preclinical findings in ocular models have been translated to the clinic with promising results. This review discusses the preclinical and clinical evidence of the effects of PBM in ophthalmology and provides recommendations of the clinical use of PBM in the management of ocular conditions.
PMID:39211002 | PMC:PMC11358123 | DOI:10.3389/fopht.2024.1388602
2021
670nm photobiomodulation modulates bioenergetics and oxidative stress, in rat Müller cells challenged with high glucose
PLoS One. 2021 Dec 3;16(12):e0260968. doi: 10.1371/journal.pone.0260968. eCollection 2021.
ABSTRACT
Diabetic retinopathy (DR), the most common complication of diabetes mellitus, is associated with oxidative stress, nuclear factor-κB (NFκB) activation, and excess production of vascular endothelial growth factor (VEGF) and intracellular adhesion molecule-1 (ICAM-1). Muller glial cells, spanning the entirety of the retina, are involved in DR inflammation. Mitigation of DR pathology currently occurs via invasive, frequently ineffective therapies which can cause adverse effects. The application of far-red to near-infrared (NIR) light (630-1000nm) reduces oxidative stress and inflammation in vitro and in vivo. Thus, we hypothesize that 670nm light treatment will diminish oxidative stress preventing downstream inflammatory mechanisms associated with DR initiated by Muller cells. In this study, we used an in vitro model system of rat Müller glial cells grown under normal (5 mM) or high (25 mM) glucose conditions and treated with a 670 nm light emitting diode array (LED) (4.5 J/cm2) or no light (sham) daily. We report that a single 670 nm light treatment diminished reactive oxygen species (ROS) production and preserved mitochondrial integrity in this in vitro model of early DR. Furthermore, treatment for 3 days in culture reduced NFκB activity to levels observed in normal glucose and prevented the subsequent increase in ICAM-1. The ability of 670nm light treatment to prevent early molecular changes in this in vitro high glucose model system suggests light treatment could mitigate early deleterious effects modulating inflammatory signaling and diminishing oxidative stress.
PMID:34860856 | PMC:PMC8641888 | DOI:10.1371/journal.pone.0260968
A Randomized Trial of Photobiomodulation Therapy for Center-Involved Diabetic Macular Edema with Good Visual Acuity (Protocol AE)
Ophthalmol Retina. 2022 Apr;6(4):298-307. doi: 10.1016/j.oret.2021.10.003. Epub 2021 Oct 8.
ABSTRACT
PURPOSE: To determine if treatment with a photobiomodulation (PBM) device results in greater improvement in central subfield thickness (CST) than placebo in eyes with center-involved diabetic macular edema (CI-DME) and good vision.
DESIGN: Phase 2 randomized clinical trial.
PARTICIPANTS: Participants had CI-DME and visual acuity (VA) 20/25 or better in the study eye and were recruited from 23 clinical sites in the United States.
METHODS: One eye of each participant was randomly assigned 1:1 to a 670-nm light-emitting PBM eye patch or an identical device emitting broad-spectrum white light at low power. Treatment was applied for 90 seconds twice daily for 4 months.
MAIN OUTCOME MEASURES: Change in CST on spectral-domain OCT at 4 months.
RESULTS: From April 2019 to February 2020, 135 adults were randomly assigned to either PBM (n = 69) or placebo (n = 66); median age was 62 years, 37% were women, and 82% were White. The median device compliance was 92% with PBM and 95% with placebo. OCT CST increased from baseline to 4 months by a mean (SD) of 13 (53) μm in PBM eyes and 15 (57) μm in placebo eyes, with the mean difference (95% confidence interval [CI]) being -2 (-20 to 16) μm (P = 0.84). CI-DME, based on DRCR Retina Network sex- and machine-based thresholds, was present in 61 (90%) PBM eyes and 57 (86%) placebo eyes at 4 months (adjusted odds ratio [95% CI] = 1.30 (0.44-3.83); P = 0.63). VA decreased by a mean (SD) of -0.2 (5.5) letters and -0.6 (4.6) letters in the PBM and placebo groups, respectively (difference [95% CI] = 0.4 (-1.3 to 2.0) letters; P = 0.64). There were 8 adverse events possibly related to the PBM device and 2 adverse events possibly related to the placebo device. None were serious.
CONCLUSIONS: PBM as given in this study, although safe and well-tolerated, was not found to be effective for the treatment of CI-DME in eyes with good vision.
PMID:34628066 | PMC:PMC9011341 | DOI:10.1016/j.oret.2021.10.003
670 nm photobiomodulation improves the mitochondrial redox state of diabetic wounds
Quant Imaging Med Surg. 2021 Jan;11(1):107-118. doi: 10.21037/qims-20-522.
ABSTRACT
BACKGROUND: Photobiomodulation (PBM) by far-red (FR) to near-infrared (NIR) light has been demonstrated to accelerate diabetic wound healing in preclinical and clinical studies. Mitochondrial dysfunction and oxidative stress play key roles in impaired diabetic wound healing, and the effect of PBM on the metabolic state of diabetic wounds remains to be elucidated.
METHODS: In this study, a custom-designed in vivo fluorescence imaging technique was used to quantitatively assess the effect of FR-PBM on the mitochondrial bioenergetics of diabetic wounds. The intrinsic fluorescence of two mitochondrial co-enzymes, nicotinamide adenine dinucleotide (NADH) and oxidized flavin adenine dinucleotide (FAD), was monitored to quantify the redox ratio (RR) (NADH/FAD) of wounds over time.
RESULTS: Using an excisional model of wound healing, we demonstrated that 670 nm (FR) PBM improved mitochondrial bioenergetics and stimulated the rate of wound healing in diabetic db/db mice. Wound closure and the RR of diabetic wounds in response to 670 nm PBM (4.5 J/cm2, 60 mW/cm2 for 90 s per day, 5 days/week) were compared to the sham-treated group. At day 9 of post-wounding, we observed a 43% decrease in the wound area and a 75% increase in RR in FR-treated diabetic mice compared to sham-treated diabetic mice.
CONCLUSIONS: We conclude that the increase in mitochondrial RR and the related decrease in oxidative stress may be an important factor in FR-PBM mediated acceleration of wound healing in diabetic mice.
PMID:33392015 | PMC:PMC7719930 | DOI:10.21037/qims-20-522
2020
Photobiomodulation preserves mitochondrial redox state and is retinoprotective in a rodent model of retinitis pigmentosa
Sci Rep. 2020 Nov 23;10(1):20382. doi: 10.1038/s41598-020-77290-w.
ABSTRACT
Photobiomodulation (PBM) by far-red (FR) to near-infrared (NIR) light has been demonstrated to restore the function of damaged mitochondria, increase the production of cytoprotective factors and prevent cell death. Our laboratory has shown that FR PBM improves functional and structural outcomes in animal models of retinal injury and retinal degenerative disease. The current study tested the hypothesis that a brief course of NIR (830 nm) PBM would preserve mitochondrial metabolic state and attenuate photoreceptor loss in a model of retinitis pigmentosa, the P23H transgenic rat. P23H rat pups were treated with 830 nm light (180 s; 25 mW/cm2; 4.5 J/cm2) using a light-emitting diode array (Quantum Devices, Barneveld, WI) from postnatal day (p) 10 to p25. Sham-treated rats were restrained, but not treated with 830 nm light. Retinal metabolic state, function and morphology were assessed at p30 by measurement of mitochondrial redox (NADH/FAD) state by 3D optical cryo-imaging, electroretinography (ERG), spectral-domain optical coherence tomography (SD-OCT), and histomorphometry. PBM preserved retinal metabolic state, retinal function, and retinal morphology in PBM-treated animals compared to the sham-treated group. PBM protected against the disruption of the oxidation state of the mitochondrial respiratory chain observed in sham-treated animals. Scotopic ERG responses over a range of flash intensities were significantly greater in PBM-treated rats compared to sham controls. SD-OCT studies and histological assessment showed that PBM preserved the structural integrity of the retina. These findings demonstrate for the first time a direct effect of NIR PBM on retinal mitochondrial redox status in a well-established model of retinal disease. They show that chronic proteotoxic stress disrupts retinal bioenergetics resulting in mitochondrial dysfunction, and retinal degeneration and that therapies normalizing mitochondrial metabolism have considerable potential for the treatment of retinal degenerative disease.
PMID:33230161 | PMC:PMC7684292 | DOI:10.1038/s41598-020-77290-w
Fluorescence Imaging of Mitochondrial Redox State to Assess Diabetic Wounds
IEEE J Transl Eng Health Med. 2019 Oct 18;7:1800809. doi: 10.1109/JTEHM.2019.2945323. eCollection 2019.
ABSTRACT
Background: Diabetes is known to cause delayed wound healing, and chronic non-healing lower extremity ulcers may end with lower limb amputations and mortalities. Given the increasing prevalence of diabetes mellitus worldwide, it is critical to focus on underlying mechanisms of these debilitating wounds to find novel therapeutic strategies and thereby improve patient outcome. Methods: This study aims to design a label-free optical fluorescence imager that captures metabolic indices (NADH and FAD autofluorescence) and monitors the in vivo wound healing progress noninvasively. Furthermore, 3D optical cryo-imaging of the mitochondrial redox state was utilized to assess the volumetric redox state of the wound tissue. Results: The results from our in vivo fluorescence imager and the 3D cryo-imager quantify the differences between the redox state of wounds on diabetic mice in comparison with the control mice. These metabolic changes are associated with mitochondrial dysfunction and higher oxidative stress in diabetic wounds. A significant correlation was observed between the redox state and the area of the wounds. Conclusion: The results suggest that our developed novel optical imaging system can successfully be used as an optical indicator of the complex wound healing process noninvasively.
PMID:32166047 | PMC:PMC6889942 | DOI:10.1109/JTEHM.2019.2945323
2019
Mitochondrial Dysfunction in the Aging Retina
Biology (Basel). 2019 May 11;8(2):31. doi: 10.3390/biology8020031.
ABSTRACT
Mitochondria are central in retinal cell function and survival and they perform functions that are critical to cell function. Retinal neurons have high energy requirements, since large amounts of ATP are needed to generate membrane potentials and power membrane pumps. Mitochondria over the course of aging undergo a number of changes. Aged mitochondria exhibit decreased rates of oxidative phosphorylation, increased reactive oxygen species (ROS) generation and increased numbers of mtDNA mutations. Mitochondria in the neural retina and the retinal pigment epithelium are particularly susceptible to oxidative damage with aging. Many age-related retinal diseases, including glaucoma and age-related macular degeneration, have been associated with mitochondrial dysfunction. Therefore, mitochondria are a promising therapeutic target for the treatment of retinal disease.
PMID:31083549 | PMC:PMC6627398 | DOI:10.3390/biology8020031
2018
Photoreceptor Survival Is Regulated by GSTO1-1 in the Degenerating Retina
Invest Ophthalmol Vis Sci. 2018 Sep 4;59(11):4362-4374. doi: 10.1167/iovs.18-24627.
ABSTRACT
PURPOSE: Glutathione-S-transferase omega 1-1 (GSTO1-1) is a cytosolic glutathione transferase enzyme, involved in glutathionylation, toll-like receptor signaling, and calcium channel regulation. GSTO1-1 dysregulation has been implicated in oxidative stress and inflammation, and contributes to the pathogenesis of several diseases and neurological disorders; however, its role in retinal degenerations is unknown. The aim of this study was to investigate the role of GSTO1-1 in modulating oxidative stress and consequent inflammation in the normal and degenerating retina.
METHODS: The role of GSTO1-1 in retinal degenerations was explored by using Gsto1-/- mice in a model of retinal degeneration. The expression and localization of GSTO1-1 were investigated with immunohistochemistry and Western blot. Changes in the expression of inflammatory (Ccl2, Il-1β, and C3) and oxidative stress (Nox1, Sod2, Gpx3, Hmox1, Nrf2, and Nqo1) genes were investigated via quantitative real-time polymerase chain reaction. Retinal function in Gsto1-/- mice was investigated by using electroretinography.
RESULTS: GSTO1-1 was localized to the inner segment of cone photoreceptors in the retina. Gsto1-/- photo-oxidative damage (PD) mice had decreased photoreceptor cell death as well as decreased expression of inflammatory (Ccl2, Il-1β, and C3) markers and oxidative stress marker Nqo1. Further, retinal function in the Gsto1-/- PD mice was increased as compared to wild-type PD mice.
CONCLUSIONS: These results indicate that GSTO1-1 is required for inflammatory-mediated photoreceptor death in retinal degenerations. Targeting GSTO1-1 may be a useful strategy to reduce oxidative stress and inflammation and ameliorate photoreceptor loss, slowing the progression of retinal degenerations.
PMID:30193308 | DOI:10.1167/iovs.18-24627
Cuban Epidemic Neuropathy: Insights into the Toxic-Nutritional Hypothesis through International Collaboration
MEDICC Rev. 2018 Apr;20(2):27-31. doi: 10.37757/MR2018.V20.N2.6.
ABSTRACT
From 1991 to 1993, an epidemic of optic and peripheral neuropathy-the largest of the century-broke out in Cuba, affecting more than 50,000 people. Initially the main clinical features were decreased visual acuity, central and cecocentral scotomas, impaired color vision and absence of the papillomacular bundle. Later, peripheral and mixed optic-peripheral forms began to appear. Due to the magnitude of the epidemic, the Cuban government requested help from the international community at the 46th World Health Assembly in 1993. PAHO and WHO immediately responded by sending a mission of international experts. Several hypotheses regarding the pathogenesis of Cuban epidemic neuropathy were put forward including: toxic, nutritional, genetic and infectious. The authors refer to extensive studies by researchers sponsored by the Cuban government and PAHO/WHO, joined by scientists from several other countries, including the USA. This paper describes their multidisciplinary work, particularly devoted to investigating the hypothesis of a primary toxic-nutritional cause of the epidemic. Clinical aspects, such as case definition and clinical description, were vital issues from the start. Cuban physicians who first examined patients received a clear impression of its toxic-nutritional origin, later confirmed by international experts. Research then focused on the mechanisms contributing to damage under the toxic-nutritional hypothesis. These included injuries to the mitochondrial oxidative phosphorylation pathway, nutritional deficiencies, excitotoxicity, formate toxicity and dysfunction of the blood-brain barrier. It was expected that the results of such international collaboration into this major health problem would also shed more light on mechanisms underlying other nutritional or tropical myeloneuropathies. KEYWORDS Optic neuritis, optic neuropathy, peripheral neuropathy, neurotoxicity syndromes, disease outbreaks, international cooperation, Cuba Erratum: Page 30, first complete paragraph, line 7, "Two models were developed independently by Cuban researchers" should read "Two models were developed independently by AAS and AGQ."
PMID:29773773 | DOI:10.37757/MR2018.V20.N2.6
2017
Understanding the antimicrobial activity of selected disinfectants against methicillin-resistant Staphylococcus aureus (MRSA)
PLoS One. 2017 Oct 16;12(10):e0186375. doi: 10.1371/journal.pone.0186375. eCollection 2017.
ABSTRACT
Disinfectants and biocidal products have been widely used to combat Methicillin-resistant Staphylococcus aureus (MRSA) infections in homes and healthcare environments. Although disruption of cytoplasmic membrane integrity has been documented as the main bactericidal effect of biocides, little is known about the biochemical alterations induced by these chemical agents. In this study, we used Fourier transform infrared (FT-IR) spectroscopy and chemometric tools as an alternative non-destructive technique to determine the bactericidal effects of commonly used disinfectants against MRSA USA-300. FTIR spectroscopy permits a detailed characterization of bacterial reactivity, allowing an understanding of the fundamental mechanism of action involved in the interaction between bacteria and disinfectants. The disinfectants studied were ethanol 70% (N = 5), isopropanol (N = 5), sodium hypochlorite (N = 5), triclosan (N = 5) and triclocarban (N = 5). Results showed less than 5% colony forming units growth of MRSA treated with triclocarban and no growth in the other groups. Nearly 70,000 mid-infrared spectra from the five treatments and the two control (untreated; N = 4) groups of MRSA (bacteria grown in TSB and incubated at 37°C (Control I) / at ambient temperature (Control II), for 24h) were pre-processed and analyzed using principal component analysis followed by linear discriminant analysis (PCA-LDA). Clustering of strains of MRSA belonging to five treatments and the discrimination between each treatment and two control groups in MRSA (untreated) were investigated. PCA-LDA discriminatory frequencies suggested that ethanol-treated spectra are the most similar to isopropanol-treated spectra biochemically. Also reported here are the biochemical alterations in the structure of proteins, lipid membranes, and phosphate groups of MRSA produced by sodium hypochlorite, triclosan, and triclocarban treatments. These findings provide mechanistic information involved in the interaction between MRSA strains and hygiene products; thereby demonstrating the potential of spectroscopic analysis as an objective, robust, and label-free tool for evaluating the macromolecular changes involved in disinfectant-treated MRSA.
PMID:29036196 | PMC:PMC5643108 | DOI:10.1371/journal.pone.0186375
Spectrally resolved infrared microscopy and chemometric tools to reveal the interaction between blue light (470nm) and methicillin-resistant Staphylococcus aureus
J Photochem Photobiol B. 2017 Feb;167:150-157. doi: 10.1016/j.jphotobiol.2016.12.030. Epub 2016 Dec 23.
ABSTRACT
Blue light inactivates methicillin-resistant Staphylococcus aureus (MRSA), a Gram-positive antibiotic resistant bacterium that leads to fatal infections; however, the mechanism of bacterial death remains unclear. In this paper, to uncover the mechanism underlying the bactericidal effect of blue light, a combination of Fourier transform infrared (FTIR) spectroscopy and chemometric tools is employed to detect the photoreactivity of MRSA and its distinctive pathway toward apoptosis after treatment. The mechanism of action of UV light and vancomycin against MRSA is also investigated to support the findings. Principal component analysis followed by linear discriminant analysis (PCA- LDA) is employed to reveal clustering of five groups of MRSA samples, namely untreated (control I), untreated and incubated at ambient air (control II), irradiated with 470nm blue light, irradiated with 253.5 UV light, and vancomycin-treated MRSA. Loadings plot from PCA-LDA analysis reveals important functional groups in proteins (1683, 1656, 1596, 1542cm-1), lipids (1743, 1409cm-1), and nucleic acids region of the spectrum (1060, 1087cm-1) that are responsible for the classification of blue light irradiated spectra and control spectra. Cluster vector plots and scores plot reveals that UV light-irradiated spectra are the most biochemically similar to blue light- irradiated spectra; however, some wavenumbers experience a shift. The shifts between blue light and UV light irradiated loadings plot at νasym PO2- band (from 1228 to 1238cm-1), DNA backbone (from 970 to 966cm-1) and base pairing vibration of DNA (from 1717 to 1712cm-1) suggest distinctive changes in DNA conformation in response to irradiation. Our findings indicate that irradiation of MRSA with 470nm light induces A-DNA cleavage and that B-DNA is more resistant to damage by blue light. Blue light and UV light treatment of MRSA are complementary and distinct from the known antimicrobial effect of vancomycin. Moreover, it is known that UV-induced cleavage of DNA predominantly targets B-DNA, which is in agreement with the FTIR findings. Overall the results suggest that the combination of light and vancomycin could be a more robust approach in treating MRSA infections.
PMID:28064075 | DOI:10.1016/j.jphotobiol.2016.12.030
2015
Long time remodeling during retinal degeneration evaluated by optical coherence tomography, immunocytochemistry and fundus autofluorescence
Exp Eye Res. 2016 Sep;150:122-34. doi: 10.1016/j.exer.2015.10.012. Epub 2015 Oct 29.
ABSTRACT
PURPOSE: To characterize the relationship between fundus autofluorescence (FAF), Optical Coherence Tomography (OCT) and immunohistochemistry (IHC) over the course of chronic retinal degeneration in the P23H rat.
METHODS: Homozygous albino P23H rats, Sprague-Dawley (SD) rats as controls and pigmented Long Evans (LE) rats were used. A Spectralis HRA OCT system was used for scanning laser ophthalmoscopy (SLO) imaging OCT and angiography. To determine FAF, fluorescence was excited using diode laser at 488 nm. A fast retina map OCT was performed using the optic nerve as a landmark. IHC was performed to correlate with the findings of OCT and FAF changes.
RESULTS: During the course of retinal degeneration, the FAF pattern evolved from some spotting at 2 months old to a mosaic of hyperfluorescent dots in rats 6 months and older. Retinal thicknesses progressively diminished over the course of the disease. At later stages of degeneration, OCT documented changes in the retinal layers, however, IHC better identified the cell loss and remodeling changes. Angiography revealed attenuation of the retinal vascular plexus with time.
CONCLUSION: We provide for the first time a detailed long-term analysis of the course of retinal degeneration in P23H rats using a combination of SLO and OCT imaging, angiography, FAF and IHC. Although, the application of noninvasive methods enables longitudinal studies and will decrease the number of animals needed for a study, IHC is still an essential tool to identify retinal changes at the cellular level.
PMID:26521765 | DOI:10.1016/j.exer.2015.10.012
Near-Infrared Photobiomodulation in Retinal Injury and Disease
Adv Exp Med Biol. 2016;854:437-41. doi: 10.1007/978-3-319-17121-0_58.
ABSTRACT
Evidence is growing that exposure of tissue to low energy photon irradiation in the far-red (FR) to near-infrared (NIR) range of the spectrum, collectively termed "photobiomodulation" (PBM) can restore the function of damaged mitochondria, upregulate the production of cytoprotective factors and prevent apoptotic cell death. PBM has been applied clinically in the treatment of soft tissue injuries and acceleration of wound healing for more than 40 years. Recent studies have demonstrated that FR/NIR photons penetrate diseased tissues including the retina. The therapeutic effects of PBM have been hypothesized to result from intracellular signaling pathways triggered when FR/NIR photons are absorbed by the mitochondrial photoacceptor molecule, cytochrome c oxidase, culminating in improved mitochondrial energy metabolism, increased cytoprotective factor production and cell survival. Investigations in rodent models of methanol-induced ocular toxicity, light damage, retinitis pigmentosa and age-related macular degeneration have demonstrated the PBM attenuates photoreceptor cell death, protects retinal function and exerts anti-inflammatory actions.
PMID:26427443 | DOI:10.1007/978-3-319-17121-0_58
2013
Photobiomodulation induced by 670 nm light ameliorates MOG35-55 induced EAE in female C57BL/6 mice: a role for remediation of nitrosative stress
PLoS One. 2013 Jun 28;8(6):e67358. doi: 10.1371/journal.pone.0067358. Print 2013.
ABSTRACT
BACKGROUND: Experimental autoimmune encephalomyelitis (EAE) is the most commonly studied animal model of multiple sclerosis (MS), a chronic autoimmune demyelinating disorder of the central nervous system. Immunomodulatory and immunosuppressive therapies currently approved for the treatment of MS slow disease progression, but do not prevent it. A growing body of evidence suggests additional mechanisms contribute to disease progression. We previously demonstrated the amelioration of myelin oligodendrocyte glycoprotein (MOG)-induced EAE in C57BL/6 mice by 670 nm light-induced photobiomodulation, mediated in part by immune modulation. Numerous other studies demonstrate that near-infrared/far red light is therapeutically active through modulation of nitrosoxidative stress. As nitric oxide has been reported to play diverse roles in EAE/MS, and recent studies suggest that axonal loss and progression of disability in MS is mediated by nitrosoxidative stress, we investigated the effect of 670 nm light treatment on nitrosative stress in MOG-induced EAE.
METHODOLOGY: Cell culture experiments demonstrated that 670 nm light-mediated photobiomodulation attenuated antigen-specific nitric oxide production by heterogenous lymphocyte populations isolated from MOG immunized mice. Experiments in the EAE model demonstrated down-regulation of inducible nitric oxide synthase (iNOS) gene expression in the spinal cords of mice with EAE over the course of disease, compared to sham treated animals. Animals receiving 670 nm light treatment also exhibited up-regulation of the Bcl-2 anti-apoptosis gene, an increased Bcl-2:Bax ratio, and reduced apoptosis within the spinal cord of animals over the course of disease. 670 nm light therapy failed to ameliorate MOG-induced EAE in mice deficient in iNOS, confirming a role for remediation of nitrosative stress in the amelioration of MOG-induced EAE by 670 nm mediated photobiomodulation.
CONCLUSIONS: These data indicate that 670 nm light therapy protects against nitrosative stress and apoptosis within the central nervous system, contributing to the clinical effect of 670 nm light therapy previously noted in the EAE model.
PMID:23840675 | PMC:PMC3696113 | DOI:10.1371/journal.pone.0067358
Low-intensity far-red light inhibits early lesions that contribute to diabetic retinopathy: in vivo and in vitro
Invest Ophthalmol Vis Sci. 2013 May 1;54(5):3681-90. doi: 10.1167/iovs.12-11018.
ABSTRACT
PURPOSE: Treatment with light in the far-red to near-infrared region of the spectrum (photobiomodulation [PBM]) has beneficial effects in tissue injury. We investigated the therapeutic efficacy of 670-nm PBM in rodent and cultured cell models of diabetic retinopathy.
METHODS: Studies were conducted in streptozotocin-induced diabetic rats and in cultured retinal cells. Diabetes-induced retinal abnormalities were assessed functionally, biochemically, and histologically in vivo and in vitro.
RESULTS: We observed beneficial effects of PBM on the neural and vascular elements of retina. Daily 670-nm PBM treatment (6 J/cm(2)) resulted in significant inhibition in the diabetes-induced death of retinal ganglion cells, as well as a 50% improvement of the ERG amplitude (photopic b wave responses) (both P < 0.01). To explore the mechanism for these beneficial effects, we examined physiologic and molecular changes related to cell survival, oxidative stress, and inflammation. PBM did not alter cytochrome oxidase activity in the retina or in cultured retinal cells. PBM inhibited diabetes-induced superoxide production and preserved MnSOD expression in vivo. Diabetes significantly increased both leukostasis and expression of ICAM-1, and PBM essentially prevented both of these abnormalities. In cultured retinal cells, 30-mM glucose exposure increased superoxide production, inflammatory biomarker expression, and cell death. PBM inhibited all of these abnormalities.
CONCLUSIONS: PBM ameliorated lesions of diabetic retinopathy in vivo and reduced oxidative stress and cell death in vitro. PBM has been documented to have minimal risk. PBM is noninvasive, inexpensive, and easy to administer. We conclude that PBM is a simple adjunct therapy to attenuate the development of diabetic retinopathy.
PMID:23557732 | PMC:PMC3668802 | DOI:10.1167/iovs.12-11018
2012
Inhibitory effects of 405 nm irradiation on Chlamydia trachomatis growth and characterization of the ensuing inflammatory response in HeLa cells
BMC Microbiol. 2012 Aug 15;12:176. doi: 10.1186/1471-2180-12-176.
ABSTRACT
BACKGROUND: Chlamydia trachomatis is an intracellular bacterium that resides in the conjunctival and reproductive tract mucosae and is responsible for an array of acute and chronic diseases. A percentage of these infections persist even after use of antibiotics, suggesting the need for alternative treatments. Previous studies have demonstrated anti-bacterial effects using different wavelengths of visible light at varying energy densities, though only against extracellular bacteria. We investigated the effects of visible light (405 and 670 nm) irradiation via light emitting diode (LEDs) on chlamydial growth in endocervical epithelial cells, HeLa, during active and penicillin-induced persistent infections. Furthermore, we analyzed the effect of this photo treatment on the ensuing secretion of IL-6 and CCL2, two pro-inflammatory cytokines that have previously been identified as immunopathologic components associated with trichiasis in vivo.
RESULTS: C. trachomatis-infected HeLa cells were treated with 405 or 670 nm irradiation at varying energy densities (0 - 20 J/cm2). Bacterial growth was assessed by quantitative real-time PCR analyzing the 16S: GAPDH ratio, while cell-free supernatants were examined for IL-6 and monocyte chemoattractant protein-1 (CCL2) production. Our results demonstrated a significant dose-dependent inhibitory effect on chlamydial growth during both active and persistent infections following 405 nm irradiation. Diminished bacterial load corresponded to lower IL-6 concentrations, but was not related to CCL2 levels. In vitro modeling of a persistent C. trachomatis infection induced by penicillin demonstrated significantly elevated IL-6 levels compared to C. trachomatis infection alone, though 405 nm irradiation had a minimal effect on this production.
CONCLUSION: Together these results identify novel inhibitory effects of 405 nm violet light on the bacterial growth of intracellular bacterium C. trachomatis in vitro, which also coincides with diminished levels of the pro-inflammatory cytokine IL-6.
PMID:22894815 | PMC:PMC3438111 | DOI:10.1186/1471-2180-12-176
Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by photobiomodulation induced by 670 nm light
PLoS One. 2012;7(1):e30655. doi: 10.1371/journal.pone.0030655. Epub 2012 Jan 24.
ABSTRACT
BACKGROUND: The approved immunomodulatory agents for the treatment of multiple sclerosis (MS) are only partially effective. It is thought that the combination of immunomodulatory and neuroprotective strategies is necessary to prevent or reverse disease progression. Irradiation with far red/near infrared light, termed photobiomodulation, is a therapeutic approach for inflammatory and neurodegenerative diseases. Data suggests that near-infrared light functions through neuroprotective and anti-inflammatory mechanisms. We sought to investigate the clinical effect of photobiomodulation in the Experimental Autoimmune Encephalomyelitis (EAE) model of multiple sclerosis.
METHODOLOGY/PRINCIPAL FINDINGS: The clinical effect of photobiomodulation induced by 670 nm light was investigated in the C57BL/6 mouse model of EAE. Disease was induced with myelin oligodendrocyte glycoprotein (MOG) according to standard laboratory protocol. Mice received 670 nm light or no light treatment (sham) administered as suppression and treatment protocols. 670 nm light reduced disease severity with both protocols compared to sham treated mice. Disease amelioration was associated with down-regulation of proinflammatory cytokines (interferon-γ, tumor necrosis factor-α) and up-regulation of anti-inflammatory cytokines (IL-4, IL-10) in vitro and in vivo.
CONCLUSION/SIGNIFICANCE: These studies document the therapeutic potential of photobiomodulation with 670 nm light in the EAE model, in part through modulation of the immune response.
PMID:22292010 | PMC:PMC3265499 | DOI:10.1371/journal.pone.0030655
2011
Therapeutic effect of near infrared (NIR) light on Parkinson's disease models
Front Biosci (Elite Ed). 2012 Jan 1;4(3):818-23. doi: 10.2741/E421.
ABSTRACT
Parkinson's disease (PD) is a neurodegenerative disorder that affects large numbers of people, particularly those of a more advanced age. Mitochondrial dysfunction plays a central role in PD, especially in the electron transport chain. This mitochondrial role allows the use of inhibitors of complex I and IV in PD models, and enhancers of complex IV activity, such as NIR light, to be used as possible therapy. PD models fall into two main categories; cell cultures and animal models. In cell cultures, primary neurons, mutant neuroblastoma cells, and cell cybrids have been studied in conjunction with NIR light. Primary neurons show protection or recovery of function and morphology by NIR light after toxic insult. Neuroblastoma cells, with a gene for mutant alpha-synuclein, show similar results. Cell cybrids, containing mtDNA from PD patients, show restoration of mitochondrial transport and complex I and IV assembly. Animal models include toxin-insulted mice, and alpha-synuclein transgenic mice. Functional recovery of the animals, chemical and histological evidence, and delayed disease progression show the potential of NIR light in treating Parkinson's disease.
PMID:22201916 | DOI:10.2741/E421
2010
Effects of low-level light therapy on streptozotocin-induced diabetic kidney
J Photochem Photobiol B. 2010 May 3;99(2):105-10. doi: 10.1016/j.jphotobiol.2010.03.002. Epub 2010 Mar 11.
ABSTRACT
Hyperglycemia causes oxidative damage in tissues prone to complications in diabetes. Low-level light therapy (LLLT) in the red to near infrared range (630-1000nm) has been shown to accelerate diabetic wound healing. To test the hypothesis that LLLT would attenuate oxidative renal damage in Type I diabetic rats, male Wistar rats were made diabetic with streptozotocin (50mg/kg, ip), and then exposed to 670nm light at a dose of 9J/cm(2) once per day for 14weeks. The activity and expression of catalase and the activity of Na K-ATPase increased in kidneys of light-treated diabetic rats, whereas the activity and expression of glutathione peroxidase and the expression of Na K-ATPase were unchanged. LLLT lowered the values of serum BUN, serum creatinine, and BUN/creatinine ratio. In addition, LLLT augmented the activity and expression of cytochrome c oxidase, a primary photoacceptor molecule in the mitochondrial respiratory chain, and reduced the formation of the DNA adduct 8-hydroxy-2'-deoxyguanosine in kidney. LLLT improved renal function and antioxidant defense capabilities in the kidney of Type I diabetic rats. Thus, 670nm LLLT may be broadly applicable to the amelioration of renal complications induced by diabetes that disrupt antioxidant defense mechanisms.
PMID:20356759 | DOI:10.1016/j.jphotobiol.2010.03.002
2009
Ocular and systemic safety evaluation of calcium formate as a dietary supplement
Journal of ocular pharmacology and therapeutics, 25(3), pp.223-230